final cycle of refinement included 235 variable parameters and converged with $R=0.058$. $w R=$ $0.069 ; S=1.07$; the highest peak in the final ΔF map had a height of $0.21(6)$ e $\AA^{-3},(\Delta / \sigma)_{\max }=0.282$. All calculations were performed on a PDP-11 minicomputer using SDP (Frenz, 1978) and local programs.

Discussion. The final atomic positions and equivalent isotropic temperature factors for non- H atoms are given with their e.s.d.'s in Table 1.* Bond lengths, bond angles and relevant torsion angles are listed in Table 2. A perspective view of the molecule with the atom-labelling system is shown in Fig. 1. Distances and angles in the five-membered triazole ring are in excellent agreement with those reported earlier (Ribár, Stanković, Argay, Kálmán \& Koczó, 1987), except the $\mathrm{N}(3)-\mathrm{N}(1)$ distance which is significantly shorter. The triazole ring is fairly planar. The dihedral angles formed by the least-squares planes of the triazole and the two benzene rings are 84.4 (2) for

[^0]$\mathrm{C}(4)-\mathrm{C}(9)$ and $86.7(2)^{\circ}$ for $\mathrm{C}(10)-\mathrm{C}(15)$. Between the best planes of two benzene rings the dihedral angle is $9.0(2)^{\circ}$. Torsion angles indicate that $\mathrm{C}(7)$, $\mathrm{N}(6), \mathrm{O}(1), \mathrm{O}(2)$ and $\mathrm{C}(13), \mathrm{N}(7), \mathrm{C}(16), \mathrm{C}(17)$ lie in the planes of the corresponding benzene rings.
The symmetry-related molecules are linked together by a pair of $\mathrm{N} \cdots \mathrm{N}$ hydrogen bonds with $\mathrm{N}(5) \cdots \mathrm{N}(2)^{\prime}=3.028(6), \quad \mathrm{H}(\mathrm{N} 5) \cdots \mathrm{N}(2)^{\prime}=2.080(6) \AA$ and $\mathrm{N}(5)-\mathrm{H}(\mathrm{N} 5) \cdots \mathrm{N}(2)^{\prime}=149 \cdot 0(4)^{\circ}$, forming dimers (Fig. 1). Fig. 2 shows the molecular packing in a stereoview down a axis.

References

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press.

Gunić, E. \& Tabaković, I. (1988). J. Org. Chem. 53, 5081-5084. Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). multanl1/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Potts, K. T. (1961). Chem. Rev. 61, 87-127.
Ribár, B., Stanković, S., Argay, Gy., Kálmán, A. \& Koczó, F. (1987). Acta Cryst. C43, 1712-1713.

Acta Cryst. (1991). C47, 1212-1215

4,5-Dimethoxy-2-[3-(1,4-oxazinan-4-yl)-3-oxopropyl]- N-(2-pyridyl)benzenesulfonamide Methanol Solvate

By E. Eliopoulos and B. Sheldrick
Astbury Department of Biophysics, University of Leeds, Leeds LS2 9JT, England
and S. Hamodrakas
Department of Biochemistry, University of Athens, Panepistimiopolis, Athens 157.01, Greece

(Received 27 November 1989; accepted 7 September 1990)

Abstract

C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S} . \mathrm{CH}_{4} \mathrm{O}, M_{r}=467 \cdot 54\), triclinic, $P \overline{1}, a=8.429$ (6), $b=11 \cdot 271$ (3), $c=12.606$ (3) \AA, α $=76 \cdot 302(8), \quad \beta=78.320(4), \gamma=78.227(8)^{\circ}, \quad V=$ $1124.02(90) \AA^{3}, \quad Z=2, \quad D_{m}=1 \cdot 34, \quad D_{x}=$ $1.38 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \alpha)=1.5418 \AA, \quad \mu=$ $1.54 \mathrm{~mm}^{-1}, F(000)=496, T=293 \mathrm{~K}$, final $R=0.051$ for 2940 observed reflections. There are two molecules of methanol per unit cell, each with two alternative orientations. $\mathrm{C}(A 1)$ is common to both orientations whereas the methanol O atom occupies sites $\mathrm{O}(A 1)$ and $\mathrm{O}(A 2)$ with equal probability.

Introduction. Derivatives of benzothiazinone have anti-inflammatory activity (Lombardino \& Wiseman, 1971) and are known to affect the central nervous system (Sianesi, Redaelli, Magistretti \& Massarani, 1973). Sulfonamides, similar in structure to benzothiazinone, have been synthesized (Camoutsis \& Catsoulakos, 1976, 1980; Catsoulakos \& Camoutsis, 1980) and are being tested for pharmacological properties.

Crystallographic studies of a series of these compounds have been carried out (Hamodrakas \&
(C) 1991 International Union of Crystallography

Table 1. Fractional atom coordinates $\left(\times 10^{4}\right)$ for non- H atoms with e.s.d.'s in parentheses and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$

	$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{i}{ }^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.		
	\boldsymbol{r}	y	z
S(1)	3506 (1)	-846 (1)	-1581 (1)
$\mathrm{O}(1)$	4472 (3)	-2062 (2)	- 1342 (2)
$\mathrm{O}(2)$	4163 (3)	163 (2)	-1411 (2)
$\mathrm{O}(3)$	124 (3)	3621 (2)	-2111 (2)
$\mathrm{O}(4)$	- 5588 (3)	4373 (3)	-1801 (3)
$\mathrm{O}(5)$	2713 (3)	- 338 (2)	-6235 (2)
O (6)	4366 (3)	- 2333 (2)	- 5245 (2)
$\mathrm{N}(1)$	1696 (3)	-773 (3)	-865 (2)
$\mathrm{N}(2)$	-836 (3)	- 1318 (2)	- 232 (2)
$\mathrm{N}(3)$	-2389 (3)	3097 (2)	- 1663 (2)
C(1)	3230 (3)	- 583 (3)	- 2985 (2)
C(2)	2391 (3)	518 (3)	-3521 (2)
C(3)	2200 (4)	595 (3)	4617 (3)
C(4)	2848 (4)	- 357 (3)	- 5171 (3)
C(5)	3726 (4)	- 1449 (3)	-4630 (2)
C(6)	3904 (4)	- 1553 (3)	-3550 (2)
C(7)	703 (4)	- 1612 (3)	-786 (2)
C(8)	1063 (4)	- 2709 (3)	-1201 (3)
C(9)	- 100 (5)	- 3434 (3)	- 1037 (3)
$\mathrm{C}(10)$	-1675 (5)	- 3107 (3)	-471 (3)
C (11)	- 1984 (5)	-2053 (4)	-86 (3)
$\mathrm{C}(12)$	1676 (4)	1638 (3)	- 3004 (3)
C(13)	-162 (4)	1789 (3)	-2646 (3)
C (14)	-797 (4)	2919 (3)	-2136 (3)
C (15)	-3661 (5)	2448 (4)	-1766 (4)
C (16)	-4942 (6)	3356 (4)	-2335 (4)
C (17)	-4325 (6)	4990 (4)	- 1735 (4)
C (18)	-3065 (5)	4152 (3)	-1131 (3)
$\mathrm{C}(19)$	1937 (6)	781 (4)	-6851 (3)
$\mathrm{C}(20)$	5351 (6)	-3415 (3)	-4720 (3)
C(AI)	-868 (10)	3829 (8)	4131 (8)
$\mathrm{O}(\mathrm{A} 1)^{*}$	- 1781 (11)	4775 (8)	3692 (10)
$\mathrm{O}\left(\mathrm{A}^{2}\right)^{*}$	604 (11)	3907 (8)	3694 (10)
* Site occupancy 0.5.			

Filippakis, 1977; Hamodrakas, Filippakis \& Sheldrick, 1977; Hamodrakas, Akrigg, Sheldrick \& Camoutsis, 1978; Perdikatsis, Catsoulakos \& Filippakis, 1979; Panagiotopoulos, Filippakis \& Catsoulakos, 1980; Panagiotopoulos \& Filippakis, 1980; Eliopoulos, Sheldrick \& Hamodrakas, 1983a,b) in attempts to relate structure and activity. The title compound is a member of this series.

Experimental. Crystal $0.08 \times 0.09 \times 0.6 \mathrm{~mm}$. EnrafNonius CAD-4 diffractometer, Ni -filtered $\mathrm{Cu} K \alpha$, moving-crystal/moving-counter technique, $2<2 \theta<$ 140°. 64 reflections, with $8<\theta<62^{\circ}$, used to measure lattice parameters. Index range $-10-10(h)$, -12-12 (k), -14-14 (l), $\overline{2} \overline{2} 1$ used as intensity standard, average count 5404 with $\sigma=161$ ($3 \cdot 0 \%$). 7737 reflections measured (all available), merging ($R_{\text {int }}=$ $0.06)$ gave 3241 unique reflections with $F>3 \sigma(F)$; the analysis is based on 2940 reflections with $I>$ $3 \cdot 0 \sigma(I)$. No absorption corrections applied. Structure solved in P1 by direct methods using MULTAN (Declercq, Germain, Main \& Woolfson, 1973). All the H atoms except HN l were located from difference Fourier maps. Refinement of 400 parameters by least squares on F, space group $P \overline{1}$; In final cycles anisotropic temperature factors for non-H atoms, overall scale factor refined anisotropically

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{S}(1)-\mathrm{O}(1)$	1.443 (3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.391 (6)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.438 (3)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.406 (5)
$\mathrm{S}(\mathrm{I})-\mathrm{C}(1)$	1.779 (4)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.403 (6)
$\mathbf{S}(1)-\mathrm{N}(1)$	1.605 (3)	$\mathrm{C}(2)-\mathrm{C}(12)$	1.517 (6)
		$\mathrm{C}(3)-\mathrm{C}(4)$	1.378 (6)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.360 (5)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.402 (6)
$\mathrm{N}(2)-\mathrm{C}(7)$	1.360 (5)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.375 (6)
$\mathrm{N}(2)-\mathrm{C}(11)$	1.357 (6)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.409 (6)
$\mathrm{N}(3)-\mathrm{C}(14)$	1.349 (5)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.355 (6)
$\mathrm{N}(3)-\mathrm{C}(15)$	1.458 (6)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.397 (7)
$\mathrm{N}(3)-\mathrm{C}(18)$	1.461 (5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.345 (7)
		$\mathrm{C}(12)-\mathrm{C}(13)$	1.510 (7)
$\mathrm{O}(3)-\mathrm{C}(14)$	1.225 (5)	C(13)-C(14)	1.514 (6)
$\mathrm{O}(4)-\mathrm{C}(16)$	1.423 (7)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.497 (8)
$\mathrm{O}(4)-\mathrm{C}(17)$	1.410 (7)	C(17)-C(18)	1.476 (8)
$\mathrm{O}(5)-\mathrm{C}(19)$	1.424 (6)		
$\mathrm{O}(5)-\mathrm{C}(4)$	1.364 (5)	$\mathrm{O}(A 1)-\mathrm{C}(A 1)$	$1 \cdot 262$ (14)
$\mathrm{O}(6)-\mathrm{C}(5)$	1.364 (5)	$\mathrm{O}(A 2)-\mathrm{C}(A 1)$	1.263 (14)
$\mathrm{O}(6)-\mathrm{C}(20)$	1.428 (6)		
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	1166 (2)	$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$125 \cdot 2$ (4)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	106.4 (2)	$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(5)$	$115 \cdot 3$ (4)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	109.7 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.1 (4)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	112.2 (2)	$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	115.9 (4)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$105 \cdot 6$ (2)	$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(6)$	125.0 (4)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$105 \cdot 9$ (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.2 (4)
		$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	128.8 (4)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	122.9 (3)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	113.7 (3)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(7)$	121.2 (4)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	117.6 (4)
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(14)$	126.4 (4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.2 (4)
$\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{C}(14)$	120.6 (4)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	121-1 (4)
$\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{C}(15)$	112.2 (4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	117.4 (5)
		$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	122.6 (5)
$\mathrm{C}(16)-\mathrm{O}(4)-\mathrm{C}(17)$	110.9 (5)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(2)$	113.8 (4)
$\mathrm{C}(19)-\mathrm{O}(5)-\mathrm{C}(4)$	117.7 (4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.2 (4)
$\mathrm{C}(20)-\mathrm{O}(6)-\mathrm{C}(5)$	116.1 (3)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	121.0 (4)
		$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	117.9 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	122.9 (3)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{O}(3)$	121.0(4)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{S}(1)$	116.8 (3)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(3)$	109.1 (5)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	120.2 (4)	$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	112.4 (5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	117.5 (4)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(4)$	111.7 (5)
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(1)$	124.5 (4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(3)$	$109 \cdot 7$ (4)
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(3)$	118.0 (4)		
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.4 (4)		
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.5 (4)		

(Shakked \& Rabinovich, 1977); solvent H-atom positions were not refined and $U_{\text {iso }}=0.075 \AA^{2}$ was assumed for these atoms, only $U_{\text {iso }}$ of $\mathrm{H}(\mathrm{N} 1)$ was refined, other H atoms were refined isotropically; unit weights. Final $R=0.051 .(\Delta / \sigma)_{\max }=0.06 . \Delta \rho=$ $-0.21-0.16 \mathrm{e} \AA^{-3}$. Refinement calculations with SHELX (Sheldrick, 1976); atomic scattering factors as supplied by the program.

Discussion. Atomic parameters are given in Table 1,* bond distances and angles in Table 2. Fig. 1 is a view of the molecule showing the atom numbering and Fig. 2 shows the molecular packing.
The results of this study are in close agreement with those of related compounds (Hamodrakas et al., 1978; Hamodrakas, Filippakis \& Sheldrick, 1977; Hamodrakas \& Filippakis, 1977; Eliopoulos et al., $1983 a, b)$. Thus, the peptide group, $\mathrm{C}(13), \mathrm{C}(14)$,

[^1]$\mathrm{O}(3), \mathrm{N}(3), \mathrm{C}(15), \mathrm{C}(18)$ is almost planar [maximum deviation from the plane $0.105(3) \AA$] and the $\mathrm{C}(14)-\mathrm{N}(3)$ bond $[1.349(5) \AA$] displays partial double-bond character.
In the propionyl(1,4 -oxazine) side chain, the plane containing $\mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(14)$ and $\mathrm{O}(3)$ [maximum deviation from least-squares plane $0.020(3) \AA]$, is arranged at an angle of $68.7(1)^{\circ}$ to the phenyl

Fig. 1. PLUTO78 (Motherwell \& Clegg, 1978) drawing of the molecule showing numbering of the atoms.

Fig. 2. x-axis projection packing diagram drawn by the program PLUTO78.
ring; torsion angles $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)=$ $-103 \cdot 1(4)$ and $\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)=$ $179.9(3)^{\circ}$, similar to those of related structures (Hamodrakas et al., 1978; Eliopoulos et al., 1983a,b). The oxazine ring is in the chair conformation. The methoxy groups $\mathrm{O}(5)-\mathrm{C}(19)$ and $\mathrm{O}(6)-\mathrm{C}(20)$ are almost coplanar with the phenyl ring [torsion angles $4.4(5)$ and $2 \cdot 9(5)^{\circ}$ respectively] with $\mathrm{C}(19)$ and $\mathrm{C}(20)$ being 0.07 (1) and 0.14 (1) \AA from the plane of the ring. This planar arrangement has been observed in more than 70 structures while the $\mathrm{O}(5)-\mathrm{C}(4)$ and $\mathrm{O}(6)-\mathrm{C}(5)$ bond lengths, 1.364 (5) and $1.364(5) \AA$ respectively, indicate partial double-bond character and compare well with the average calculated value of $1.36 \AA$ for similar bonds (Hamodrakas, 1974). The tendency of the methoxy groups to be coplanar with the phenyl ring has resulted in some close contacts between $\mathrm{C}(19)$ and $\mathrm{C}(3)$, and $\mathrm{C}(20)$ and $\mathrm{C}(6)$ and the H atoms attached to them, which have been relieved by an increase of the angles $\mathrm{C}(3)-\mathrm{C}(4)-$ $\mathrm{O}(5)$ and $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(6)$ from 120 to $125 \cdot 2$ (4) and $125 \cdot 0(4)^{\circ}$ respectively.

The tetrahedral coordination around the S atom is distorted, with the $\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$ angle being $116.6(2)^{\circ}$, larger then the normal tetrahedral value, possibly due to repulsions between the sulfonamide O atoms (Kálmán, Duffin \& Kucsman, 1971). The $\mathrm{S}(1)-\mathrm{O}(1)$ and $\mathrm{S}(1)-\mathrm{O}(2)$ bond lengths of 1.443 (3) and 1.438 (3) \AA indicate π-bond character of over 60% (Cruickshank, 1961), while the $\mathrm{S}(1)-\mathrm{C}(1)$ and $\mathrm{S}(1)-\mathrm{N}(1)$ bond lengths of 1.779 (4) and 1.605 (3) \AA are very close to values obtained for similar structures (Hamodrakas et al., 1978; Eliopoulos et al., 1983a,b).
This sample was crystallized from methanol. In the unit cell there are two molecules of methanol present each with two alternative orientations. $\mathrm{C}(A 1)$ is common to both orientations whereas the methanol oxygen occupies sites $\mathrm{O}(A 1)$ and $\mathrm{O}(A 2)$ with equal probability.

We would like to thank Dr Camoutsis for providing the material. EE acknowledges support from a University of Leeds postgraduate studentship and from a Science and Engineering Research Council grant to the Leeds Molecular Recognition Centre.

References

Camoutsis, Ch. \& Catsoulakos, P. (1976). Private communication.
Camoutsis, Ch. \& Catsoulakos, P. (1980). J. Heterocycl. Chem. 17, 1135-1136.
Catsoulakos, P. \& Camoutsis, Ch. (1980). J. Heterocycl. Chem. 17, 981-983.
Cruickshank, D. W. J. (1961). J. Chem. Soc. pp! 5486-5504. Declerca, J.-P., Germain, G., Main, P. \& Woolfson, M. M. (1973). Acta Cryst. A29, 231-234.

Eliopoulos, E., Sheldrick, B. \& Hamodrakas, S. (1983a). Acta Cryst. C39, 743-745.
Eliopoulos, E., Sheldrick, B. \& Hamodrakas, S. (1983b). Acta Cryst. C39, 1693-1695.
Hamodrakas, S. (1974). PhD Thesis, Univ. of Leeds, England.
Hamodrakas, S., Akrigg, D., Sheldrick, B. \& Camoutsis, C. (1978). Acta Cryst. B34, 3426-3428.

Hamodrakas, S. \& Filippakis, S. E. (1977). Cryst. Struct. Commun. 6, 301-306.
Hamodrakas, S., Filippakis, S. E. \& Sheldrick, B. (1977). Cryst. Struct. Commun. 6, 209-214.
Kálmán, A., Duffin, B. \& Kucsman, A. (1971). Acta Cryst. B27, 586-594.
Lombardino, J. G. \& Wiseman, E. H. (1971). J. Med. Chem. 14, 973-977.

Motherwell, W. D. S. \& Clegg, W. (1978). Pluto78. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Panagiotopoulos, N. G. \& Filippakis, S. E. (1980). Cryst. Struct. Commun. 9, 321-324.
Panagiotopoulos, N. G., Filippakis, S. E. \& Catsoulakos, P. (1980). Cryst. Struct. Commun. 9, 313-320.

Perdikatsis, B., Catsoulakos, P. \& Filippakis, S. E. (1979). Cryst. Struct. Commun. 8, 213-220.
Shakked, Z. \& Rabinovich, D. (1977). Proc. IV Eur. Crystallogr. Meet., Oxford, Abstracts, pp. 142-143.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sianesi, E., Redaelli, R., Magistretti, M. S. \& Massarani, E. (1973). J. Med. Chem. 16, 1133-1137.

Acta Cryst. (1991). C47, 1215-1219

Structure of a Potent Oxytocin-Receptor Ligand

By Richard G. Ball
Merck Sharp \& Dohme Research Laboratories, PO Box 2000, Rahway, New Jersey 07065, USA

(Received 24 May 1990; accepted 12 September 1990)

Abstract

Pro-D-Phe- $\psi($ CS—NH $)$-Ile-D-Thp-Thp-d-MePhe-] [where D-Thp is the residue formed from the cyclic imino acid (R)-2,3,4,5-tetrahydro-pyridazine-3-carboxylic acid], $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S}, M_{r}=$ 754.96, monoclinic, $\quad P 2_{1}, \quad a=10.413(7), \quad b=$ 17.225 (8), $\quad c=11.200$ (4) $\AA, \quad \beta=97.77$ (4) ${ }^{\circ}, \quad V=$ $1990 \AA^{3}, Z=2, \quad D_{x}=1 \cdot 260 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1 \cdot 54184 \AA, \quad \mu=1 \cdot 12 \mathrm{~mm}^{-1}, \quad F(000)=804, \quad T=$ $296 \mathrm{~K}, R(F)=0.067$ for 2343 observed $[I \geq 3 \sigma(I)$] reflections. A macrocycle containing six amino acids, all with peptide linkages, adopts a conformation in which the backbone is relatively flat except at Phe$\psi(\mathrm{CS})$ which is well out of the plane of the rest of the molecule. The presence of an S instead of an O atom in an amide unit may contribute to conformational changes as a result of the larger steric requirements of sulfur. Changing an amide to a thioamide does not result in changes to the bond distances or angles within an amino-acid residue.

Introduction. The compound cyclo[-Pro-d-Phe-$\psi(\mathrm{CS}-\mathrm{NH})$-Ile-D-Thp-Thp-D-MePhe-]* (1) has been prepared (Bock, DiPardo, Williams, Pettibone, Clineschmidt, Ball, Veber \& Freidinger, 1990) and found to be a highly potent and selective oxytocinreceptor ligand. The crystal structure analysis was undertaken to determine the conformation of the

[^2]cyclic ring, the relative positioning of the ring substituents and what, if any, steric requirements can be ascribed to the presence of the isoteric group $\mathrm{C}=\mathrm{S}$ in a modified phenylalanine.

(1)

Experimental. Crystals grown by slow evaporation of an ethanol solution. Crystal $0.15 \times 0.07 \times 0.24 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer. Lattice parameters determined using 11 reflections with $18<2 \theta<$ 34. Lorentz-polarization correction applied; absorption correction using empirical method (absorption surface) (Walker \& Stuart, 1983). Maximum and minimum correction coefficients applied to F_{o} were 1.6394 and $0 \cdot 6809$. Intensity measurements in range $0<2 \theta<120^{\circ}$ (index limits: $h, 11 ; k, 19 ; l, \pm$ © 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53483 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53558 (29 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * The nomenclature used is in accordance with IUPAC-IUB Joint Commission on Biochemical Nomenclature (1984).

